Blog

January 6, 2017

I-Broadband LNA Yabamukeli be-UWB Besebenzisa Indlela Yokuguqulela I-Superivation Superified

RF Power Capacitors
ngu-Inthanethi Archive Book Izithombe

I-Broadband LNA Yabamukeli be-UWB Besebenzisa Indlela Yokuguqulela I-Superivation Superified

I. ISINGENISO
Ukuthuthukiswa kwezinhlelo zokuxhumana okungenazintambo ezihamba ngesivinini esiphezulu kubeka isicelo esandayo kumadivayisi we-RF abiza izindleko aphansi nge-bandwidth ye-multi-GHz esebenza ekusetshenzisweni kwamandla okuphansi kanye namandla okuhambisa. I-Ultra-wideband (IEEE 802.15.3a) ibonakala njengobuchwepheshe obusha obukwazi ukukala amazinga aphezulu wokudluliswa kwedatha (kufika ku-1 Gb / s) emabangeni amafushane (10 m) ngamandla aphansi. Lobu buchwepheshe busebenzisa olunye uhlelo lokusebenza njengamanethiwekhi endawo angenazintambo (ama-WPAN), ukuhlinzeka ngemvelo yokudluliswa komsindo, ividiyo, nenye idatha yedatha ephezulu. Enye yezindlela eziphakanyisiwe ukusebenzisa i-spectrum engu-3.1-10.6-GHz eyabelwe izinhlelo ze-UWB, isebenzisa i-Orthogonal Frequency Division Multiplexin OFDM modulation enama-sub-band ayi-14 noma ngubani ophethe ububanzi bebhendi elingu-528-MHz nohlelo lokushesha lokuvama [ 1]. Ku-OFDM, izidingo ze-sub-carrier f zidinga ukufana. Le ndlela isusa ukukhuluma phakathi kweziteshi ezingaphansi futhi ngokufanele amabhendi onogada angaphakathi akudingeki. Yize izinga lingazange lipheleliswe, i-frontband end wide LNA iyadingeka impela kungakhathalekile ukwakhiwa komamukeli. I-amplifier kufanele ihlangabezane nezidingo ezimbalwa, ngokwesibonelo ukuxhumana ne-preselect filter kanye ne-antenna, i-impedance yokufaka ye-amplifier kufanele ibe seduze kwama-50 phezu kwebhande le-UWB olifunayo. Kodwa-ke inzuzo eyanele ngobubanzi bebhendi ebanzi ukudlula umsindo wesixubuzi, isibalo somsindo ophansi sokwenza ngcono ukuzwela komamukeli, ukusetshenziswa kwamandla okuphansi ukukhulisa impilo yebhethri, indawo encane yokufa ukunciphisa izindleko, ukuzinza okungenamibandela kanye nobumbano oluhle yimingcele ebalulekile. Kukhona ukuhweba okusondelene phakathi kwabo. Ngokuvamile ngokuthuthukisa eyodwa yazo, ezinye ziyonakala.

II. Isigaba sokufaka
Ukulungiswa kwesango elijwayelekile nokwenziwa kweCascode yizinhlobo ezimbili zezindlela ezijwayele ukusetshenziselwa ukuklama isigaba sokufaka se-LNA kumasekethe we-CMOS, kuyilapho isakhiwo seCommon-Gate neCascode sihlinzeka ngokufakwayo kwebhendi elibanzi nelincane. Noma kunjalo isigaba sesango elijwayelekile sinesibalo somsindo esiphakeme ngokuqhathaniswa nesigaba seCascode futhi amasu wokukhansela umsindo kufanele asetshenziswe.
Kodwa-ke impedance yokufaka isethwe yi-bias & W / L ratio. Empeleni lesi sakhiwo sibheka isilinganiso senkululeko sokushintshela kwe-transistor futhi nangokukhetha umthwalo ofanele (inhlanganisela enhle yama-inductor kanye nama-capacitors ngenkathi kubhekwa umphumela we-parasitic capacitance nomzimba), uhlinzeka ngokufana kokufaka kwe-broadband okutholakalayo. Lo mthwalo kufanele ulingane no-r_ds1. Njengoba i-gm iguquka, impedance yokufaka kanye ne-bandwidth ehambisanayo icishe ilingane ne-f_T yedivayisi.
I-parasitic transistor capacitance C_gs iqala ukudlala izindima lapho imvamisa yokusebenza iqala ukukhuphuka. Kuhlelo lokusebenza lwebhande elincane, kufakwa i-shunt inductor esigabeni sokufaka ukuze ihlangane kabusha ne-C_gsto ukuthuthukisa ukufaniswa kwe-impedance kumvamisa oyifunayo. Kodwa-ke kuzicelo eziningi zebhendi elincane le-CMOS, i-cascode LNA enokuncipha kokuncipha iyathandeka kepha ukuze ihlukaniswe nokufakwa kokukhishwayo nokushiywa kwendlela ye-C_gd, iCommon-Gate LNA yenza ukubuyela emuva okungcono nokuzinza kuqhathaniswa ne-Common-Source LNA.

III. UKWENZELWA KWESIKHUNGO NOKUHLAZIYWA
I-LNA ye-wide-band ehlongozwayo ikhonjisiwe ku-Fig. 1. Siqukethe isigaba sokufaka kanye nesigaba somthombo ovamile. Ithebula 1 likhombisa amanani wedizayini ye-CMOS LNA ehlongozwayo. I-off-chip bias-T inikela ngokuchema kwesango lika-M_3 nendlela ye-DC yamanje ye-M_1. Uchungechunge lwe-inductor L_4 luphinda luzwakale ngamandla wokufaka wesisekelo wokufaka we-M_3, okuholele kumkhawulokudonsa omkhudlwana futhi okunye okusele kusilinganiso sempendulo yemvamisa [17]. Amandla we-parasitic we-M_2

Umdwebo 1. I-LNA ehlongozwayo yokukhansela umsindo

ITHEBULA I
Dizayina amanani wenani le-CMOS LNA ehlongozwayo
I-L_in 4nH (W / L) 3 135 / 0.18
I-L_0 0.5nH (W / L) 4 37.5 / 0.18
I-L_1 4.5nH (W / L) 5 45 / 0.18
L_2 2.5nH C_in, C_ (ngaphandle,) C_3 2PF
I-L_3 0.9nH C_1, C_2 1PF
L_4 2.2nH R_1 290Ω
L_5 0.8nH R_2 135Ω
(W / L) 1 18 / 0.18 R_3 40Ω
(W / L) 2 30 / 0.18
futhi uM_3 enze isakhiwo seladi se-LC nge-inductor L_0. Ama-DC load resistors R_1 no-R_2 ahlanganiswe ne-shunt peaking inductors L_1 no-L_2 ngokulandelana ukunweba umkhawulokudonsa wesifunda ngempumelelo [10]. Uchungechunge oluphakama kakhulu kwe-inductor L_2 luphinde luhlangane nenani eliphelele lama-parasitic capacitances C_d2 no-C_d3 lapho kugeleza khona i-M_2 ne-M_3. Njengoba i-resistor load, i-R_3, ingezwa ukunciphisa i-Q factor ye-L_3 ngenzuzo ethambile. Ubude besiteshi obuncane obungu-0.18μm buthathwa njengabo bonke abaguquli besekethe ehlongozwayo ukunciphisa amandla we-parasitic nokwenza ngcono ukusebenza kwemvamisa. Isigaba somthombo ovamile sinweba umkhawulokudonsa, sihlinzeka ngokuhlukaniswa okungcono futhi sandisa inzuzo yokuvama. Eqinisweni isigaba sokufaka kanye nesigaba esivamile somthombo sisekela ukuzuza kwamandla emvamisa ephansi nokuzuza kwamandla okuvama kakhulu, ngokulandelana. Ukuhlanganiswa kwazo zombili izimpendulo zemvamisa kuholela ekutholeni amandla we-broadband. ITransistor M5 ibuye isize isigaba esivamile somthombo ukukhulisa nokushelela kokuthola imvamisa. Umdwebo 2 ukhombisa umphumela we-M5 kupharamitha ye-S21.

Umdwebo. 2 Umphumela we-M5 kupharamitha ye-S21

Ku-Fig. 3 imiphumela ye-M1 njengesigaba sokufaka iyaphenywa. Ipharamitha eyenziwe ye-NF ne-S11 iqhathaniswa necala nge-M1 icishiwe. Kukhona ukuhweba okuseduze phakathi kweNF neS11. Uma i-M_1 ivuliwe, i-NF iyandiswa futhi ipharamitha ye-S21 iyancipha ngokusatshalaliswa kwamandla okufanayo kanye ne-bandwidth efanayo, kepha kunalokho kuzotholakala ukufaniswa kokufaka okwamukelekayo. Ukuhlushwa okwengeziwe kufanele kunikezwe kuzici zomsindo wesakhiwo se-Common-Gate esigabeni sokufaka, yize i-transistor M_1 inikeza ukufana kwebhendi elibanzi, inesibalo esikhulu somsindo.

Umdwebo 3. Isibalo somsindo esilinganisiwe nokuhlukaniswa kokufakwa nge-M1 KUVULIWE futhi KUVALIWE.

Ukuze uphenye ukusebenza komsindo, imodeli yomsindo we-MOS transistor ngomsindo oshisayo wesiteshi iyasetshenziswa. Njengoba kukhonjisiwe ku-Fig. 4, ungayinaki isango nemisindo ekhanyayo futhi uthatha umdlalo ophelele kulokhu kuhlaziywa, i-PSD yomsindo oshisayo wesiteshi (i_ (n, d) ^ 2) ̅ unikezwa njenge
(i_ (n, d) ^ 2) ̅ = 4KTγg_do ∆f = 4KT γ / α g_m ∆f (1)
Likuphi i-Boltzmann njalo, yizinga lokushisa eliphelele ku-Kelvin, γ yi-coefficient ye-MOS transistor yomsindo oshisayo wesiteshi, i-α ichazwa njenge-ratio ye-transconductance g_mand zero-bias drain conductance g_ds futhi yi-bandwidth lapho isibalo somsindo kukalwa ngokulandelana.
Lezi zibalo ezilandelayo zichaza isibalo somsindo ngo-R_1, M_1, M_2 no-M_3 ukuthi sinikele kunani lomsindo jikelele [1]

Umdwebo 4. Umgomo wesikimu somsindo

Uma ngabe isimo (2) sitholakele umsindo we-M_1 ukhishiwe [1].

g_m2 R_1 = g_m3 R_s (2)

Lezi zibalo ezilandelayo zichaza isibalo somsindo ngo-R_1, M_2 no-M_3 ukuthi sinikela kunani lomsindo jikelele.

I-F_R1 = (4KT 〖R_1 g_m2〗 ^ 2) / (KTR_s (g_m3 + 〖g_m2 R〗 _1 / R_s) ^ 2) = R_s / R_1 (3)

I-F_M2 = (4KTγ / αg_m2) / (KTR_s 〖(g_m3 + g_1m1 (Z_ (L_R1) ‖r_o1) g_m2)〗 ^ 2) = γ / α 1 / (g_m2 R_1) F_R1 (4)

I-F_M3 = (4KTγ / α g_m3) / (KTR_s 〖(g_m3 + g_m1 (Z_ (L_R1) ‖r_o1) g_m2)〗 ^ 2) = (4γ / α) / (〖g_m3 R〗 _s 〖(1 + R_s g_m1) 2 ^ 5) (XNUMX)

Ngakho-ke, inani lomsindo eliphelele lingalinganiselwa njengo (6)

I-F_total = R_s / R_1 (1 + γ / α 1 / (g_m2 R_1)) + (4 γ / α) / (〖g_m3 R〗 _s 〖(1 + R_s g_m1)〗 ^ 2) (6)

IMIPHUMELA YOKULINGANISA
Isifunda senziwe ngesoftware ye-Hspice yomtapo wolwazi we-0.18μm TSMC. Konke ukulingisa kwenziwa ngokucabangela amatheminali wokufaka nawokukhipha angama-50Ω. Ku-Fig. 5 (a) zuza amandla futhi zihlukanise ukuhlukaniswa kwe-LNA kuyalingiswa. Amandla okuthola isilinganiso acishe abe yi-14.5 dB ene-0.7 dB ripple ngaphezulu kwebanga lokuvama. Ukuhlukaniswa okuhlukile kungaphansi kuka -35dB. Umdwebo 5 (b) ukhombisa isibalo somsindo, okokufaka nokokuhlukanisa okukhiphayo. I-NF ingaphansi kuka-2.9 dB, i-S11 ingaphansi kuka-14.8db kanti i-S22 icishe ibe ngaphansi kuka -10dB.

(B)
Umdwebo 5. (a) Amandla enzuzo alingisiwe nokuhlukaniswa okuhlukile (b) Isibalo somsindo esilingisiwe, ukuhlukaniswa kokufakwa kanye nokuhlukaniswa komkhiqizo

"Umdwebo 6" ukhombisa i-IIP3 yesekethe kuqhathaniswa nobuningi.

Umdwebo 7. Kukalwe IIP3 kuqhathaniswa nobuningi

Imiphumela yalo msebenzi ikhonjiswa ku- "TABLE II" futhi iqhathaniswa nama-CMOS LNAs asanda kushicilelwa.

ITHEBULA 2 ISIFINYEZO SOKWENZA
VI. ISIPHETHO
Leli phepha liveza ukwakheka okusha kohlaka lwe-UWB LNA olususelwa kubuchwepheshe obujwayelekile be-RFCMOS. Ukufaniswa kokufaka okugculisayo nokusebenza komsindo kutholakala ngemuva maqondana ne-tradeoffs phakathi kwe-impedance yokufaka yesigaba esivamile sesango kanye ne-. ukusebenza komsindo. Isibalo somsindo esilinganisiwe singaphansi kuka-2.9 dB ngaphezulu kuka-3.1-10.6-GHz. Inzuzo ethe xaxa kufanele ishiwo kukho konke ukwakhiwa kwe-LNA futhi ukuzuza kwamandla okulingisiwe kungu-14.5 ± 0.7 dB.

IZINDAWO ZOLWAZI
[1] U-Chih-Fan Liao, noShen-Iuan Liu, ”i-Broadband Noise-Canceling CMOS LNA ye-3.1-10.6-GHz UWB Receivers” IEEE JOURNAL OF SOLID-STATE CIRCUITS, IVOL. 42, CHA. 2, FEBRUWARI 2007
[2] Kuang-Chi He, Ming-Tsung Li, Chen-Ming Li, noJenn-Hwan Tarng, Parallel-RC Feedback Low-Noise Amplifier for UWB Applications IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS – II: EXPRESS BRIEFS, VOL. 57, CHA. 8, AUGUST 2010
[3] UZhe-Yang Huang, Che-Cheng Huang, Chun-Chieh Chen, Chung-Chih Hung noChia-Min Chen ”An Inductor-Coupling
Isihlanganisi se-CMOS Low Noon esenziwe kabusha esingu-3.1-10.6GHz Ultra-Wideband System ”© 2009 IEEE
[4] Yang Lu, Kiat Seng Yeo, Alper Cabuk, Jianguo Ma, Manh Anh Do, noZhenghao Lu ”Idumela le-CMOS Low-Noise Amplifier Design for 3.1-to 10.6-GHz Ultra-Wide-Band Wireless Receivers” IEEE TRANSACTIONS ON IZIKHUNGO NEZINHLELO - I: AMAPHEPHA AJwayelekile, IVOLI. 53, CHA. 8, AUGUST 2006
[5] Ali Mirvakili, Mohammad Yavari, Farshid Raissi ”I-LNA esetshenziswe kabusha esetshenziswa njengamanje ye-1-10.6 GHz UWB eyamukelayo” IEICE Electronics Express, Vol. 5, No. 21,908-914
[6] S. Stroh, “Ultra-wideband: multimedia unplugged,” IEEE Spectrum, ivol. 40, cha. 9, amakhasi 23-27, Sep. 2003.
[7] UVladimir Aparin noLawrence E. Larson, Mfowethu, IEEE ”Modified Derivative Superposition Method for Linearizing FET Low-Noise Amplifiers” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, CHA. 2, FEBRUWARI 2005
[8] A. Batra et al., "Isiphakamiso se-Multi-band OFDM sezingqimba zomzimba," IEEE 802.15-03 / 267r5, Julayi 2003.
[9] Shih-Chih Chen, Ruey-Lue Wang, Hslang-Chen Kuo noMing-Lung Kung Chang-Sing Gao ”Umklamo we-Full-Band (3.1-10.6GHZ) I-CMOS UWB Isikhulisi Somsindo Esiphansi Ngokukhanselwa Komsindo Oshisayo” Izinqubo Yengqungquthela ye-Asia-Pacific Microwave 2006.
[10] SS Mohan, MDM Hershenson, SP Boyd, noTH Lee, “bandwidth band in CMOS with optimised on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, cha. 3, amakhasi 346-355, Mar. 2000.
[11] UZhe-Yang Huang, Che-Cheng Huang, Chun-Chieh Chen, Chung-Chih Hung noChia-Min Chen ”I-Inductor-Coupling Resonated CMOS Low Noap Amplifier ye-3.1-10.6GHz Ultra-Wideband System”
[12] Chunyu Xin, Edgar S´anchez-Sinencio ”UBUGCISA BOKULIMALELA I-RF LOWNOISE AMPLIFIER”
[13] UJianyun Hu, uYunliang Zhu, noHui Wu ”Isikhulisi se-Ultra-Wideband Resistive-Feedback Low-Noise ngokukhanselwa komsindo
ku-0.18μm Digital CMOS ”978-1-4244-1856-5 / 08 / $ 25.00 © 2008 IEEE
[14] J.-H. U-Lee, C.-C. UChen no-Y.-S. I-Lin ”0.18 lm 3.1-10.6 GHz CMOS UWB LNA enenzuzo engu-11.4_0.4 dB kanye ne-100.7_17.4 ps groupdelay” ELECTRONICS LETTERS 22nd November 2007 Vol. 43 No. 24
[15] C.-P. Liang, C.-W. I-Huang, Y.-K. ULin no-S.-J. I-Chung ”3-10 GHz amplifier ye-ultra-wideband ephansi enendlela entsha ehambisanayo” ELECTRONICS LETTERS 5th August 2010 Vol. 46 No. 16
[16] UHongrui Wang, uLi Zhang, noZhiping Yu, Mfowethu, “I-WNA ye-Wideband Inductorless LNA Enempendulo Yasendaweni Noise Okhansela Izicelo Ezinamandla Amandla Aphansi” I-IEEE TRANSACTIONS EMIYANGANWENI NEZINHLELO - I: AMAPHEPHA AJwayelekile, IVOLI. 57, CHA. 8, AUGUST 2010
[17] TH Lee, The Design of CMOS Radio-Frequency Integrated Circuits, umhla ka-1 kuhleliwe. ENew York: ICambridge Univ. Cindezela, 1998.
[18] Chunyu Xin, Edgar S´anchez-Sinencio ”UBUGCISA BOKULIMALELA I-RF LOWNOISE AMPLIFIER” ISCAS 2004
[19] Ali Mirvakili, Mohammad Yavari ”Umklamo Okhansela Umsindo we-CMOS LNA we-Upper Band of UWB DS-CDMA Receivers” Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on
[20] S. Galal noB B. Razavi, “40 Gb / s amplifier and ESD protection circuit in 0.18 _mCMOS technology,” ku-IEEE ISSCC Dig. Ubuchwepheshe. Amaphepha, Feb. 2004, amakhasi 480-481.

RF Power Capacitors , , , , , ,